A generalization of Chao's estimator for covariate information.
نویسندگان
چکیده
This note generalizes Chao's estimator of population size for closed capture-recapture studies if covariates are available. Chao's estimator was developed under unobserved heterogeneity in which case it represents a lower bound of the population size. If observed heterogeneity is available in form of covariates we show how this information can be used to reduce the bias of Chao's estimator. The key element in this development is the understanding and placement of Chao's estimator in a truncated Poisson likelihood. It is shown that a truncated Poisson likelihood (with log-link) with all counts truncated besides ones and twos is equivalent to a binomial likelihood (with logit-link). This enables the development of a generalized Chao estimator as the estimated, expected value of the frequency of zero counts under a truncated (all counts truncated except ones and twos) Poisson regression model. If the regression model accounts for the heterogeneity entirely, the generalized Chao estimator is asymptotically unbiased. A simulation study illustrates the potential in gain of bias reduction. Comparisons of the generalized Chao estimator with the homogeneous zero-truncated Poisson regression approach are supplied as well. The method is applied to a surveillance study on the completeness of farm submissions in Great Britain.
منابع مشابه
A New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions
In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...
متن کاملInput-Dependent Estimation of Generalization Error under Covariate Shift
A common assumption in supervised learning is that the training and test input points follow the same probability distribution. However, this assumption is not fulfilled, e.g., in interpolation, extrapolation, active learning, or classification with imbalanced data. The violation of this assumption—known as the covariate shift— causes a heavy bias in standard generalization error estimation sch...
متن کاملAn Algebraic Derivation of Chao's Estimator of the Number of Species in a Community Highlights the Condition Allowing Chao to Deliver Centered Estimates
Anne Chao proposed a very popular, nonparametric estimator of the species richness of a community, on the basis of a limited size sampling of this community. This expression was originally derived on a statistical basis as a lower-bound estimate of the number of missing species in the sample and provides accordingly a minimal threshold for the estimation of the total species richness of the com...
متن کاملModel Selection Under Covariate Shift
A common assumption in supervised learning is that the training and test input points follow the same probability distribution. However, this assumption is not fulfilled, e.g., in interpolation, extrapolation, or active learning scenarios. The violation of this assumption— known as the covariate shift—causes a heavy bias in standard generalization error estimation schemes such as cross-validati...
متن کاملApplication of one-list capture-recapture models to scrapie surveillance data in Great Britain.
In this paper, we apply one-list capture-recapture models to estimate the number of scrapie-affected holdings in Great Britain. We applied this technique to the Compulsory Scrapie Flocks Scheme dataset where cases from all the surveillance sources monitoring the presence of scrapie in Great Britain, the abattoir survey, the fallen stock survey and the statutory reporting of clinical cases, are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 69 4 شماره
صفحات -
تاریخ انتشار 2013